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Abstract 30	

       Uncertain or inaccurate parameters in sea ice models influence seasonal predictions and 31	

climate change projections in terms of both mean and trend. We explore the feasibility and 32	

benefits of applying an Ensemble Kalman filter (EnKF) to estimate parameters in the Los 33	

Alamos sea ice model (CICE). Parameter estimation (PE) is applied to the highly influential dry 34	

snow grain radius and combined with state estimation in a series of perfect model observing 35	

system simulation experiments (OSSEs). Allowing the parameter to vary in space improves 36	

performance along the sea ice edge compared to requiring the parameter to be uniform 37	

everywhere. We compare experiments with both PE and state estimation to experiments with 38	

only the latter and found that the benefits of PE mostly occur after the DA period, when no 39	

observations are available to assimilate (i.e., the forecast period), which suggests PE’s relevance 40	

for improving seasonal predictions of Arctic sea ice.  41	
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1. Introduction 53	

Arctic sea ice has undergone rapid decline in recent decades in all seasons (e.g., Stroeve et al., 54	

2012； Serreze and Stroeve, 2015). The frequent large deviations of Arctic sea ice cover from its 55	

climatology and the impact of sea ice cover on the overlying atmosphere and on ocean-56	

atmosphere fluxes motivates including an active sea ice component in seasonal to sub-seasonal 57	

(S2S) weather forecasts (Vitart et al., 2015). The persistence and reemergence of sea ice 58	

thickness (SIT) and SST anomalies are major sources of predictability for Arctic sea ice extent 59	

(Blanchard-Wrigglesworth et al., 2011). Previous studies have demonstrated the importance of 60	

accurate initial conditions, especially SIT, in predicting Arctic sea ice extent (Day et al., 2014). 61	

Hence studies applying data assimilation (DA) techniques to fuse observations with model 62	

simulations are growing (e.g., Lisæter et al., 2003; Chen et al., 2017; Massonnet et al., 2015), 63	

most of which are focused on improving model states only, not the parameters in the sea ice 64	

component.  65	

Sea ice models, like other components of earth system models, can suffer large uncertainties 66	

originating from uncertain parameters. The widely used Los Alamos sea ice model version 5 67	

(CICE5), given its various complex schemes, has numerous uncertain parameters, such as in the 68	

delta-Eddington shortwave radiation scheme (Briegleb and Light, 2007). The default values of 69	

these parameters are usually chosen based on point-scale measurements that are taken on multi-70	

year sea ice (Light et al, 2008). Urrego-Blanco et al. (2015) conducted an uncertainty 71	

quantification study of CICE5 and ranked the parameters based on the sensitivities of model 72	

predictions to a list of parameters. This work provides guidance on which parameters could be 73	

estimated using an objective method and during which seasons. Their findings suggest that the 74	

estimates of the Arctic sea ice area and extent are especially sensitive to certain parameters (e.g., 75	

https://doi.org/10.5194/tc-2020-96
Preprint. Discussion started: 13 May 2020
c© Author(s) 2020. CC BY 4.0 License.



	 4	

snow conductivity and snow grain size) in summer. However, they also discussed that their 76	

sensitivities could be low as a consequence of prescribing atmospheric forcing in their model 77	

setup, so parametric uncertainties are expected to be larger year round (particularly in winter) in 78	

a fully-coupled model. Since we also run stand-alone CICE5 given that our aim is to demonstrate 79	

the utility of parameter estimation (PE) for sea ice, we target the summer season.  80	

Despite the importance of sea ice model parameters, few studies have tried to estimate or 81	

reduce the parametric uncertainties, partly due to the large effort and computational cost if 82	

parameter calibration is done in a trial-and-error fashion. A more systematic way is through DA. 83	

Anderson (2001) demonstrated the feasibility of updating parameters using an ensemble filter in 84	

a low-order model. Annan et al. (2005) was among the first to apply an ensemble filter to 85	

estimate parameters in a complex earth system model. Massonnet et al. (2014) employed the 86	

ensemble Kalman filter (EnKF) in a sea ice model to estimate three parameters that control sea 87	

ice dynamics. In addition to achieving their goal of improving the sea ice drift, they also realized 88	

slight improvements in the SIT distribution and extent as well as in the sea ice export through the 89	

Fram Strait.  90	

Our purpose is to expand upon previous studies to explore the feasibility of optimizing sea 91	

ice parameters by asking how different observations (concentration and thickness in this study) 92	

would constrain the parameters differently, whether we need to allow parameters to vary 93	

spatially, and what are the benefits of the updated parameters both when observations are 94	

available for assimilation (the DA period) and when observations are not available (the forecast 95	

period).  96	
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Our sea ice DA framework is introduced in Section 2. Experimental design and metrics used 97	

to evaluate model results are described in Section 3. We present results and discussions in 98	

Section 4 and conclude in Section 5.  99	

 100	

2. The sea ice data assimilation framework 101	

We use CICE5 linked to the data assimilation research testbed (DART) (Anderson et al., 102	

2009) within the framework of the Community Earth System Model version 2 (CESM2) 103	

(http://www.cesm.ucar.edu/models/cesm2). The ocean is modeled as a slab ocean and the 104	

atmospheric forcing is prescribed from a DART/CAM ensemble reanalysis (Raeder et al., 2010). 105	

Details of this framework can be found in Zhang et al. (2018). We extend DART/CICE to 106	

include parameter estimation in this study. During the assimilation, DART and CICE5 cycle 107	

between a DA step with DART and a one-day forecast step with CICE5. The state vector sent 108	

from CICE5 to DART is augmented by adding selected sea ice parameters, so that when this 109	

augmented state vector is passed into the filter during the DA step, the parameters and state 110	

variables are both updated in the same way. The updated state variables are then post-processed 111	

(if needed) and sent with the updated parameters back to CICE5 for the next one-day forecast 112	

step. Unlike state variables, the parameters are not modified during CICE5 forecast steps.  113	

 114	

3. Experiment design and evaluation methods 115	

We selected a tunable parameter in the Delta-Eddington solar radiation parameterization 116	

treatment (Briegleb and Light, 2007), Rsnw, to be estimated in this study. Rsnw represents the 117	

standard deviation of dry snow grain radius that controls the optical properties of snow and is 118	

one of the key parameters that determine snow albedo. Instead of directly tuning snow albedo 119	
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that could result in inconsistencies with the rest of the parameterization scheme, tuning Rsnw 120	

changes the inherent optical properties of snow in a self-consistent fashion (Briegleb and Light, 121	

2007). Increasing Rsnw leads to smaller dry snow grain radius and larger snow albedo (Hunke et 122	

al., 2015). The default value of Rsnw is 1.5, which corresponds to a fresh snow grain radius of 123	

125µm (Holland et al., 2012). Many parameters in CICE5, like Rsnw, have default values based 124	

on limited field observations. As sea ice models increase in complexity, empirical parameters 125	

will increasingly need to be calibrated objectively.  126	

The configurations of conducted experiments are listed in Table 1. We begin with a free run 127	

of CICE5 without DA (hereafter FREE) with 30 ensemble members. Each ensemble member has 128	

a unique value of Rsnw, which is constant in time and space. The ensemble of Rsnw values were 129	

random draws from a uniform distribution spanning -2 and 2. One of the ensemble members was 130	

designated as the truth with the true value of Rsnw. Following Zhang et al. (2018), synthetic 131	

observations were created by adding random noise to sea ice concentration and thickness (SIC 132	

and SIT, respectively) taken from the truth ensemble member. The noise follows a normal 133	

distribution with zero mean and a standard deviation of 15% for SIC and 40 cm for SIT. The 134	

FREE experiment does not assimilate any observations, and the Rsnw values stay the same 135	

throughout the experimental period.  136	

We then conducted two pairs of experiments to test the feasibility of estimating parameters 137	

using the Ensemble adjustment Kalman filter (EAKF) (Anderson, 2002), which is a deterministic 138	

ensemble square root filter. Each experiment assimilates daily SIC or SIT synthetic observations. 139	

The first pair is referred to as DAsicPEcst and DAsitPEcst, while the second is referred to as 140	

DAsicPEvar and DAsitPEvar. In each pair, the former assimilates SIC observations and the latter 141	

SIT observations. In the first pair, each ensemble member has a unique spatially-uniform Rsnw. In 142	
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the second pair, we allow a separate value of Rsnw at each horizontal grid point. The augmented 143	

state has the single parameter for Rsnw in the first pair or the two-dimensional grid of Rsnw 144	

parameters in the second pair.  145	

All variables in the sea ice state vector are two-dimensional in space. The parameter Rsnw and 146	

the state variables were updated based on their correlations with neighboring observations. The 147	

posterior ensemble generated by DART is always spatially varying. For the first pair of 148	

experiments, we take an area-weighted average of the two-dimensional posterior to get a 149	

spatially invariant Rsnw to send back to CICE5. For the second pair of experiments, the spatially 150	

varying posterior Rsnw was sent to CICE5. In all experiments, the sea ice component was run for 151	

a day to produce a new state that was augmented with the previous times posterior Rsnw (which is 152	

not prognostic in CICE5) for the next DA cycle. To increase the prior ensemble spread of Rsnw, a 153	

spatially and temporally adaptive inflation was applied to the priors of both the model states and 154	

Rsnw before they were sent to the filter (Anderson, 2007). The initial value, standard deviation, 155	

and inflation damping value of the adaptive inflation are 1.0, 0.6, and 0.9.  The localization half-156	

width is 0.01 radians (about 64 km) as discussed in Zhang et al. (2018). We also reject 157	

observations that are three standard deviations of the expected difference away from the 158	

ensemble mean of the forecast. 159	

A third pair of experiments was conducted with only state DA (no parameter estimation), 160	

known as DAsic and DAsit, that assimilate daily SIC and SIT synthetic observations, 161	

respectively. DAsic and DAsit have the same ensemble set of Rsnw, which is also the initial set of 162	

Rsnw in the above PE experiments. The ensemble of Rsnw remains fixed throughout the 163	

experiment period.  164	
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All experiments begin on 1 April 2005 and run for 18 months. Synthetic observations are 165	

assimilated only during the first 6 months (the DA period), and the next 12 months are a pure 166	

forecast period to mimic the real-world situation when making a forecast. The values of Rsnw are 167	

unchanged once DA ceases. We chose not to utilize DA beyond October 2005 for two reasons. 168	

First, sea ice states have small ensemble spread in winter, as illustrated in Figure 1a, so DA 169	

updates tend to be small. In contrast, the relatively larger spread from April to October ensures 170	

that assimilating observations can have more impact in updating model state variables and 171	

parameters. Second, the snow albedo feedback only influences the sea ice state when sunlight is 172	

present.  173	

Several commonly used error indices were calculated to evaluate the performance of the 174	

experiments. The temporal averaged root-mean-square error (RMSEs) and the area weighted 175	

spatial averaged root-mean-square error (RMSEt) are defined as follows: 176	

𝑅𝑀𝑆𝐸! =  (!!!!!!
!)!!

!!!
!

;  𝑅𝑀𝑆𝐸! =  
(!!!!!!

!)!!
!!!

!
 177	

where i and j are the indices in time and space, 𝑥 may refer to parameters or model states, N is 178	

the number of days and M is the number of grid cells. The superscripts m and t refer to model 179	

and truth, respectively. The overbar indicates the mean of the model ensemble. 180	

Model bias is defined as the mean of the 30 member ensemble of the experiments minus the 181	

truth. Absolute bias difference (ABD) between two experiments is defined as follows: 182	

𝐴𝐵𝐷 =  𝑥!!"#$! − 𝑥!! − 𝑥!!"#$! − 𝑥!!  

where 𝑥 may refer to parameters or model states, the superscripts t refers to the truth, and case1 183	

and case2 refer to the two experiments to compare. The overbar indicates the mean of the model 184	

ensemble. RAB indicates how much improvement or degradation DA offers relative to the 185	

control (FREE) run.  186	
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4. Results and Discussion 187	

4.1 Temporally and spatially invariant parameters 188	

The ensemble mean of FREE underestimates SIC throughout the year (Figure 1a) partly 189	

because our arbitrary ensemble member selected as the truth has an above average Rsnw (Figure 190	

1c). As such, we would intuitively expect Rsnw to have a positive increment as a result of 191	

assimilating SIC observations. Figure 1b confirms that Rsnw increments are positive, with the 192	

posterior ensemble mean gradually approaching the true value during the DA period in the 193	

spatially-constant PE experiments (DAsicPEcst and DAsitPEcst). The posterior Rsnw has smaller 194	

ensemble spread than the prior Rsnw (also see Figure S1d, e, and f), which is consistent with the 195	

EAKF theory. In Figure 1c DAsitPEcst outperforms DAsicPEcst starting in June, indicating that 196	

SIT provides more information than SIC for Rsnw. Similarly, with state-only DA, Zhang et al. 197	

(2018) found that SIT is more efficient than SIC observations at constraining state variables. 198	

There could be several reasons why the rate at which Rsnw approaches the true value decreases 199	

with time. First, the ensemble spread of Rsnw may be insufficient because no uncertainty is 200	

introduced into Rsnw in CICE5 during the forecast step. It is an open question how much 201	

additional uncertainty should be introduced into the parameters. To help avoid filter divergence, 202	

we apply the prior adaptive inflation to the parameters (as well as to the model states), which 203	

may still be not enough.   Second, the correlation between Rsnw and the observations may be too 204	

weak. Solar radiation becomes very low by the end of September and hence Rsnw has little impact 205	

on sea ice, which explains the weak correlation between Rsnw and the observations (further 206	

discussed below).  Either reason could result in a negligible update to Rsnw.  207	

The correlations between Rsnw and the observations have unique spatial patterns and evolve 208	

with time. On May 1st, the correlation between Rsnw and SIC is generally positive (Figure 2a). 209	
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The positive correlations are significant especially where SIC is under ~100%. Larger Rsnw 210	

corresponds to higher snow albedo and more reflected sunlight, which in turn delays the melting 211	

of sea ice. The correlations are still significant along the ice edges in August (Figure 2c) and 212	

become noisier and have less significant values by the end of the melt season (Figure 2e). The 213	

correlation between Rsnw and SIT has different spatial patterns (Figures S2b, S2d, and S2f). 214	

Negative correlations between Rsnw and SIT on May 1st can be seen in the Chukchi Sea, Beaufort 215	

Sea, and East Siberian Sea, where Rsnw and SIC have positive correlations. This suggests that 216	

where SIC increases with Rsnw in spring, it is possible that SIT actually decreases, which might 217	

be due to elevated concentration raising the compressive strength and reducing sea ice 218	

deformation. While a brighter surface is able to reduce thickness over large regions in spring, the 219	

effect is mostly gone by the end of summer when positive correlation prevails.  220	

 221	

4.2 Spatially varying Rsnw 222	

We discussed in section 4.1 that processes relating Rsnw and observed quantities have 223	

complex spatial features. The spatial map of the posterior Rsnw and the reduction in the ensemble 224	

spread of Rsnw after EAKF in the first pair of experiments (Figure S1) also suggest that the 225	

updates are concentrated on the ice marginal zones. It may be too crude to use a single value of 226	

Rsnw for the whole Arctic. We let Rsnw be a spatially varying parameter in the second pair of PE 227	

experiments, even though the true Rsnw is spatially invariant. The spatial features of Rsnw will 228	

purely depend on how Rsnw correlates with the observations. As in DAsicPEcst and DAsitPEcst, 229	

the analysis field of Rsnw is spatially varying, and we did a spatial averaging to get a single 230	

number for the next run. Rsnw along the sea ice edges get updated more, while Rsnw in the center 231	

is less influenced. But the averaging smoothed out this spatial feature. In DAsicPEvar and 232	
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DAsitPEvar, we didn't do spatial averaging at the end of each DA cycle, but let the spatially 233	

varying 2D field of Rsnw be the Rsnw field in the next run, so the spatial feature was carried along 234	

the simulation. 235	

Figure 3 depicts the ABD of Rsnw (defined in section 2) between different pairs of 236	

experiments at the end of the DA period.  Figures 2a and 2d confirm that DAsicPEcst and 237	

DAsitPEcst improve the Rsnw comparing to FREE. Figures 2b and 2e show the spatial feature of 238	

improvements or degradations in Rsnw for the two spatially varying PE experiments. They both 239	

show the contrast between the ice marginal zones and the central Arctic. Improvements are 240	

mostly seen along the ice edges. Spotty improvements in the inner Arctic can be found in 241	

DAsitPEvar (Figure 3e), while degradations are prevailing in the inner Arctic in DAsicPEvar 242	

(Figure 3e). Figures 2c and 2f highlight the improvements or degradations from allowing Rsnw to 243	

vary spatially. The general features are that DAsicPEvar and DAsitPEvar have reduced Rsnw 244	

biases more along the ice edges compared with DAsicPEcst and DAsitPEcst. However, 245	

degradations (Figure 3c) or negligible improvements (Figure 3f) are found in the central Arctic. 246	

This suggests that spatially invariant PE generally works better for the whole pan-Arctic regions, 247	

while spatially varying PE can work well in the ice marginal zones but not in the central Arctic, 248	

especially when SIC is the only observed quantity.  SIC has little variability in the central Arctic 249	

and hence assimilating the SIC observations will not add much information for parameters or 250	

model states. The degradations in Rsnw but slight improvements in SIC (discussed in section 4.3) 251	

in the central Arctic suggest that Rsnw is likely over adjusted to cancel out other errors (e.g., noise 252	

from atmospheric forcing fields).  253	

 254	

4.3 Additional improvements in model states 255	
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We demonstrated that Rsnw approaches the true value by assimilating SIC or SIT (at different 256	

rates) in the previous sections. We now investigate whether PE also improves the simulation of 257	

model states, beginning with timeseries of the pan-Arctic sea ice area and volume in all of our 258	

experiments (see Figure 4).   259	

In our preceding work, we showed that assimilating SIC and SIT could improve model 260	

states (Zhang et al., 2018), which can also be confirmed in Figure 4.  During the DA period, 261	

DAsic can efficiently reduce biases in area, but DAsic has limited influence on volume. Within 262	

about a month into the forecast period, DAsic improves neither area nor volume. In contrast, 263	

DAsit is highly beneficial at reducing both area and volume during the DA period, with at least 264	

some improvement to volume persisting through the whole 1-year forecast period.  265	

We find that updating Rsnw has a relatively large impact on volume beginning in spring of 266	

the forecast period (Figure 4b). Either treating Rsnw as a spatially varying or constant parameter 267	

has about the same effect until late summer of the forecast period. In fact, all of the PE 268	

experiments outperform the state-only DA experiments in the forecast period. As shown in Table 269	

1, SIT DA with PE always performs the best, reducing the bias in area by up to 63% and 270	

reducing the bias in volume by up to 73%. SIC DA with PE is second best in terms of simulating 271	

the area, reducing the bias by up to 37%.  SIC DA with PE is comparable to DAsit in simulating 272	

volume, reducing the bias by around 30%.  273	

Finally, we compare the spatial patterns of bias reduction in SIC and SIT from PE 274	

experiments by comparing RMSE of SIT in DAsicPEcst and DAsitPEcst to their state-only DA 275	

counterparts, DAsic and DAsit (see Figure 5). The comparisons are made in two periods: the DA 276	

period (April to October 2005) and the forecast period (April to September 2006).  Zhang et al. 277	

(2018) showed that the DAsic could only improve SIT along the sea ice edges. Figure 5a 278	
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demonstrates that DAsicPEcst offers some improvements in the central Arctic as well. 279	

Improvements resulted from a more accurate Rsnw in the forecast period are more prominent 280	

(Figure 5b). For DAsitPEcst, SIT is improved almost everywhere in the Arctic, with slight 281	

degradations along the ice edges (Figure 5c). The improvements persist throughout the forecast 282	

period (Figure 5d).  283	

 284	

5. Conclusions  285	

We extend the functionality of DART/CICE to do parameter estimation (PE) through the 286	

EAKF as well as updating the model states. One of the key parameters determining sea ice 287	

surface albedo, Rsnw, is estimated as an example in this study. Rsnw is updated using the filter. We 288	

designed a series of perfect model observing system simulation experiments (OSSEs) to 289	

demonstrate the feasibility of PE in CICE5. Results show that Rsnw gradually approaches the true 290	

value during the data assimilation (DA) period (from April to October 2005). Updating 291	

parameters with PE could further improve the model state estimation but not prominently in the 292	

DA period. During the forecast period, with a better representation of the parameter, the PE 293	

experiments show significant superiority over the state-only DA experiments, both in SIC and 294	

SIT.  The results in the forecast period indicate that by updating parameters as well as state 295	

variables, assimilating SIC observations only is comparable to assimilating SIT observations. We 296	

concluded that SIT is the most important variable to be observed in Zhang et al. (2018), but 297	

satellite observations of SIT have large uncertainties and only cover a short time period. We 298	

could alternatively improve model parameters by assimilating SIC observations with the ultimate 299	

goal of improving SIT. Results from the subset of experiments treating Rsnw as a spatially 300	

varying parameter suggest that the Rsnw biases are mostly reduced along the sea ice edges but not 301	
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as much in the central Arctic. We suggest that varying Rsnw spatially is not effective when 302	

conducting DA for the whole Arctic, but worth exploring when it comes to regional studies, such 303	

as in the seasonal sea ice zones.  304	

 305	
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Table 1. List of experiments with different configurations and RMSE of the total Arctic sea ice 393	

area and volume calculated over two experiment periods: DA (April to October, 2005) and 394	

forecast (April to September, 2006) for the seven experiments. All the experiments use the same   395	

localization half-width and prior inflation algorithm as stated in section 3.  396	

 397	

 398	

 399	

 400	

 401	

 
 
Experiments Observations 

 assimilated 
Parameter 
estimate 

RMSE of 
Arctic sea ice area 

(10!𝑘𝑚!)	

RMSE of  
Arctic sea ice volume 

(10!𝑘𝑚!)	
DA Forecast DA Forecast 

FREE None None 0.250	 0.343	 0.711	 1.302	

DAsic SIC None 0.120 (-52%)	 0.345 (4%)	 0.583 (-18%)	 1.285 (-1%)	

DAsicPEcst SIC Spatially 
constant 0.114 (-55%)	 0.217 (-37%)	 0.520 (-27%)	 0.887 (-32%)	

DAsicPEvar SIC Spatially 
varying 0.123(-51%)	 0.240(-30%)	 0.601 (-16%)	 1.130 (-13%)	

DAsit SIT None 0.113(-55%)	 0.327(-5%)	 0.247 (-65%)	 0.868 (-33%)	

DAsitPEcst SIT Spatially 
constant 0.103 (-59%)	 0.141 (-59%)	 0.210 (-70%)	 0.349 (-73%)	

DAsitPEvar SIT Spatially 
varying 0.103 (-59%)	 0.129 (-63%)	 0.222 (-69%)	 0.376 (-71%)	

https://doi.org/10.5194/tc-2020-96
Preprint. Discussion started: 13 May 2020
c© Author(s) 2020. CC BY 4.0 License.



	 19	

Figure captions 402	

Figure 1. Time series of (a) the Arctic sea ice area and (b) sea ice volume from a CICE5 free run. 403	

Each gray line represents one ensemble member, black line the ensemble mean, and red line the 404	

truth. Time series of (c) the parameter Rsnw for two DA experiments. Blue line represents 405	

DAsicPEcst that assimilates SIC observations, magenta represents DAsitPEcst that assimilates 406	

SIT,  and green line the experiment DA_PAR_CST. The red reference line indicates the true 407	

value of Rsnw. Each error bar represents two standard deviations of the 30 ensemble members of 408	

Rsnw. Error bar is shown for every five days. 409	

 410	

Figure 2. Correlations between (a) Rsnw and SIC and (b) Rsnw and SIT for 2005-05-01, (c) Rsnw 411	

and SIC and (d) Rsnw and SIT for 2005-08-01, and (e) Rsnw and SIC and (f) Rsnw and SIT for 412	

2005-10-01. At each point, we calculate the correlation of Rsnw and the observed quantities 413	

across the 30 ensemble members on the selected dates. The posterior states outputted from the 414	

experiments DAsicPEcst and DAsitPEcst are used for calculation.  415	

 416	

Figure 3. The differences of absolute mean bias (ABD, see Eq 2) of Rsnw between the DA 417	

experiments: (a) DAsicPEcst, (b) DAsicPEvar, (d) DAsitPEcst, and (e) DAsitPEvar and the 418	

control experiment FREE, and between the spatially-varying PE experiments and the spatially-419	

constant PE experiments: (c) DAsicPEvar and DAsicPEcst, and (f) DAsitPEvar and DAsitPEcst.   420	

 421	

Figure 4. Daily biases of (a) the total Arctic sea ice area and (b) the total Arctic sea ice volume 422	

for FREE (black), DAsic (blue), DAsicPEcst (green), DAsicPEvar (purple), DAsit (orange), 423	

DAsitPEcst (pink), and DAsitPEvar(red). Gray dash line in each plot represents the zero 424	
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reference line. The blue line in (a) is overlapped by the purple and green lines in the first half of 425	

time. The black line in (a) is overlapped by the orange and blue lines in the second half of time. 426	

The black line in (b) is overlapped by the blue line from February to July. 427	

 428	
Figure 5. The relative differences of RMSE of SIT between DAsicPEcst and DAsic for the (a) 429	

DA experiment period and (b) forecast period, and between DAsitPEcst and DAsit for the (c) 430	

DA experiment period and (d) forecast period. The differences of RMSE are divided by the 431	

RMSE of DAsic and DAsit, respectively, to get the relative differences. 432	

 433	

Figure S1. The posterior values of Rsnw for the experiment DAsitPEcst on (a) 2005-06-01, (b) 434	

2005-08-01, and (c) 2005-10-01, and the differences between the ensemble spread of posterior 435	

Rsnw and that of prior Rsnw (the posterior minus prior) for the experiment DAsitPEcst on (d) 436	

2005-06-01, (e) 2005-08-01, and (f) 2005-10-01. 437	

 438	

 439	

 440	

 441	

 442	

 443	

 444	

 445	

 446	

 447	
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 448	

Figure 1. Time series of (a) the Arctic sea ice area and (b) sea ice volume from a CICE5 free 449	

run. Each gray line represents one ensemble member, black line the ensemble mean, and red 450	

line the truth. Time series of (c) the parameter Rsnw for two DA experiments. Blue line 451	

represents DAsicPEcst that assimilates SIC observations, magenta represents DAsitPEcst that 452	

assimilates SIT,  and green line the experiment DA_PAR_CST. The red reference line 453	

indicates the true value of Rsnw. Each error bar represents two standard deviations of the 30 454	

ensemble members of Rsnw. Error bar is shown for every five days.  455	
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456	

 457	

 458	
Figure 2. Correlations between (a) Rsnw and SIC and (b) Rsnw and SIT for 2005-05-01, (c) Rsnw 459	

and SIC and (d) Rsnw and SIT for 2005-08-01, and (e) Rsnw and SIC and (f) Rsnw and SIT for 460	

2005-10-01. At each point, we calculate the correlation of Rsnw and the observed quantities 461	

across the 30 ensemble members on the selected dates. The posterior states outputted from the 462	

experiments DAsicPEcst and DAsitPEcst are used for calculation.  463	

 464	

R
snw

 and SIC R
snw

 and SIT 
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 465	
 466	
 467	
 468	
 469	
Figure 3. The differences of absolute mean bias (ABD, see Eq 2) of Rsnw between the DA 470	

experiments: (a) DAsicPEcst, (b) DAsicPEvar, (d) DAsitPEcst, and (e) DAsitPEvar and the 471	

control experiment FREE, and between the spatially-varying PE experiments and the spatially-472	

constant PE experiments: (c) DAsicPEvar and DAsicPEcst, and (f) DAsitPEvar and DAsitPEcst.   473	

 474	
 475	
 476	
 477	
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 478	

Figure 4. Daily biases of (a) the total Arctic sea ice area and (b) the total Arctic sea ice volume 479	

for FREE (black), DAsic (blue), DAsicPEcst (green), DAsicPEvar (purple), DAsit (orange), 480	

DAsitPEcst (pink), and DAsitPEvar(red). Gray dash line in each plot represents the zero 481	

reference line. The blue line in (a) is overlapped by the purple and green lines in the first half of 482	

time. The black line in (a) is overlapped by the orange and blue lines in the second half of time. 483	

The black line in (b) is overlapped by the blue line from February to July. 484	

 485	
 486	
 487	
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 488	

 489	
 490	
Figure 5. The relative differences of RMSE of SIT between DAsicPEcst and DAsic for the (a) 491	

DA experiment period and (b) forecast period, and between DAsitPEcst and DAsit for the (c) 492	

DA experiment period and (d) forecast period. The differences of RMSE are divided by the 493	

RMSE of DAsic and DAsit, respectively, to get the relative differences.  494	

 495	
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